模數轉換器(ADC) 是一種將模擬信號轉換為數字信號的重要器件,是實現信號在高速通信網路中傳輸,以及實現信號儲存、處理的前端器件。如圖7 所示為應用ADC 的數字ROF系統。和傳統的ROF 系統相比,數字ROF 系統在CO 不需要混頻以及本振源,并且對光鏈路的線性度以及鏈路增益要求不高,從而可以利用現有光接入網來實現傳遞射頻(RF)信號。為了克服傳統電域ADC 的內在的局限性,Henry F.Taylor 于1979 年提出了全光模數轉換器(AOADC) 的概念。全光ADC,其抽樣、量化和編碼都在光域進行,近年來備受各國科學家的重視。目前全球相關研究大都基于光纖實現數模轉換,然而為了獲得更高分辨率的模數轉換,要求光脈沖有很大的光功率,從而能耗較高,不符合光器件向“ 綠色節能”的方向發展;另一方面,由于是基于光纖的,以上的量化編碼方案不利于集成,不符合光器件向集成化的方向發展。為了使全光量化編碼器向低能耗、光子集成、高速率以及高分辨率的方向發展,我們提出了一種利用半導體光放大器(SOA) 中的非線性偏振旋轉(NPR)效應來實現全光ADC 的方法[7],其原理結構如圖8 所示。模擬信號被抽樣信號抽樣之后變成抽樣光脈沖,隨后被分成N 份,輸入到由N 個基于NPR 效應的量化編碼單元組成的量化編碼矩陣。每一個基于NPR 效應的量化編碼單元由兩個級聯的偏振開關(PSW) 組成,如圖8(d) 所示。其中PSW1 實現預量化編碼,由于隨著抽樣光脈沖強度的增強,PSW1 的SOA 中更多載流子被消耗,因而造成其輸出光功率下降,為了保持強度不同的抽樣光脈沖在量化編碼單元中所獲得的增益一致,PSW1 之后級聯另外一個偏振開關PSW2,其作用是實現增益的動態補償。8(b)所示為量化編碼單元的傳輸函數,圖8(c) 所示為相應的編碼輸出,預量化編碼和增益動態補償相結合的方式可以很好地實現量化編碼。由于SOA 的增益恢復時間在皮秒級別,因而基于NPR 效應的全光ADC,其轉換速率可以達到幾百Gs/s(Giga-Samples Per Second)。
圖7 應用ADC 的數字RoF 系統
圖8 一種利用SOA 中的NPR 效應實現全光ADC 的方法
4.3 微波光子濾波技術
微波光子濾波器(MPF) 是在光域內實現對微波/射頻信號進行濾波的器件。由于微波光子濾波器在射頻系統中具有帶寬大、快速可調諧、可重構、無電磁干擾(EMI)、低損耗和重量輕等優點,因而這一類器件已經引起了人們的興趣。如果在中心站光電變換之前加入微波光子濾波器,就可以大大減小對基帶信號處理模塊的性能和復雜度要求,避免了電子器件在處理高頻信號上帶來的“ 瓶頸”問題,并降低了器件成本。
相對于有限沖激響應(FIR) 濾波器來說,把耦合器的一個輸出端和輸入端相連即構成了光纖環延遲線。光信號每經過一次環形器就產生T延遲,理論上,光信號會無限次經過光纖環形器,所以采樣數接近無限。如圖9 所示,可以利用光子晶體取代光纖環制作微波光子濾波器,利用光子晶體波導分束器作為耦合單元,利用慢光波導作為延遲單元。相對于光纖環,光子晶體具有更好的慢光特性,可以顯著減小器件尺寸。
圖9 IIR 微波光子濾波器結構示意圖
4.4 智能天線技術
智能天線的基本原理是通過改變各天線單元的權重在空間形成方向性波束,主波束對期望用戶的信號進行跟蹤,在干擾用戶的方向形成零陷[8]。因此,波束賦形是智能天線中的關鍵技術。而電磁帶隙結構(EBG)是周期排列的結構,具有兩個重要特性,表面波帶隙和反射相位帶隙[9],利用兩個特性有利于提高波束的定向性,從而實現波束賦形。
共面緊湊型電磁帶隙(UC-EBG)結構由于不需要過孔,相對其他類型EBG 結構更易于加工制造。印刷的EBG 結構表面很高的表面阻抗,截斷了電流的傳播,同時對于入射的平面電磁波具有同相反射特性,將此種性能的結構應用于系統相當于引入一個人工磁壁。通過合理設計,EBG 結構還可以多頻工作,如利用分形結構的自相似特性,在共面型EBG 結構中引入分形,可得到多個帶隙[10],該結構可對天線的多個工作頻段性能同時進行改善。圖10(a) 為UC-EBG 結構,該結構引入了一級分形,通過對該結構進行交叉排列,得到圖10(b)所示的禁帶。由圖10(b)可知,電磁波在介質基板中不能有效傳播,這一方面使能量更加集中地從天線輻射出去,提高了天線的定向性;另一方面,由于表面波被抑制,天線方向圖的波紋減小了,這兩者都有助于波束賦形。
圖10 EBG 在天線的應用
5 結束語
由于同時具備無線化和寬帶化,光載無線技術深受業內重視并已經在國際上得到了應用。其中作為一種改善光載無線系統傳輸容量和資源調配能力的解決方案,動態可重構的智能光載無線接入網絡應運而生。其產品能夠改善多波長纖鏈路中微波光波協同問題,具有高速傳輸和資源動態調配能力,為實現寬帶化、泛在化、低功耗動態可重構微波光波融合網絡提供堅實的理論基礎與技術支撐。
6 參考文獻
[1] SHARMA V, SINGH A, SHARMA A K.Challenges to radio over fiber (RoF) technology and its mitigation schemes -- A review [J]. Optik -- International Journal for Light and Electron Optics, 2012,123(4):338-342.
[2] ZHANG Chongfu, WANG Leyang, QIU Kun.Proposal for all-optical generation of multiple-frequency millimeter-wave signals for ROF system with multiple base stations using FWM in SOA [J]. Optcs Express, 2011,19(15):13957-13962.
[3] 徐坤,李建強. 面向寬帶無線接入的光載無線系統[M]. 北京: 電子工業出版社, 2009.
[4] CAPMANY J, ORTEGA B, PASTOR D. A tutorial on microwave photonic filters [J].Journal of Lightwave Technology, 2006,24(1):201-209.
[5] SHEN Xi, XU Kun, SUN Xiaoqiang, et al.Optimized indoor wireless propagation model in Wi-Fi-RoF network architecture for RSS-Based localization in the Internet of things [C]//Proceedings of the 2011 International Topical Meeting on Microwave Photonics & 2011 Asia-Pacific Microwave Photonics Conference(MWP/APMP’11), Oct 18-21, 2011, Singapore. Piscataway, NJ,USA: IEEE, 2011: 274-277.
[6] SHEN Xi, XU Kun, SUN Xiaoqiang, et al.Dynamically reconfigurable radio-over-fiber network with medium access control protocol to provide access to train passengers [J]. Science China: Information Sciences, to be published.
[7] WEN Huashun, WANG Hongxiang, JI Yuefeng. All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers [J]. Optics Communications, 2012,285(18):3877-3885.
[8] SHEN Xi, XU Kun, WU Jian, et al. Enabling technologies for Green radio-over-fiber distributed antenna system based wireless sensor network [J].China Communication,2011, 8(8): 56-63.
[9] KOVACS P, URBANEC T. Electromagnetic band gap structures:Practical tips and advice for antenna engineers [J]. Radioengineering,2012,21(1):414-421.
[10] IERA A, FLOERKEMEIER C, MITSUGI J, et al. The Internet of things [Guest Editorial] [J].IEEE Wireless Communications, 2010,17(6):8-9.